Комплексный подход к контролю состояния изоляции турбо и гидрогенераторов в режиме мониторинга

 иснользование сислем непрерывного конгроля сосюяния. Д⿺я этюю широко ирименяются системы температурного, вибрационного. парамгтригеского мониторинга. З中ректирность использования этих систем подтвсрждена мшоголетним опытом их экеплуатаиии.
 электрических машин, ранее применяюшиеся менее часто. К таким можно отнести системы непрерывного контроля изоляции статора и ротора. Интенсивное развитие таких систем обусловлено созданием и соверпенствованием новых методов контроля изоляџии. В данной
 конгроля состояния изоляции турбо и лиярогенераноров, а также высоковоіьтных электродвигателей.

 диагностигеских алгоритмов. соответетвенно по эффективности своей работы. данная система мониторинга не имеет аналогов. Система названа реле потому, тто встроенные диагностигсские алгоритмы пргдставляют результаты работы мониторинга не в виде набора дианностиџеских парамеяров: а виде конкретных закіючений, позволяющих обслуживаюшему персоналу оперативно принимать решения о возможности и сроках эксптуатации контролируемого оборудования.

- Конрроль изолции обмотки ста сора генератора.
- Контроль изоляқии обмотки ротора тенератора.
- Коптроль) лектромагшитиой џесимметрии ллектрической мапиишы.

Рассмотрим эти группы систем подробнее.
Контроль состояния изоляции обмотки статора электритеской машины.
Лля контроля состояния изоляиии обмотки статора в реле «MDR» испольәуется метол
 чаето нрименяемым на црактике. К достоинствам этоно менода элддует отнести еьо высокую
 возниктовстия развития.

 сопоставимые с импульсами частичных разрядов. Таких помех бывает достатотно много в питаюлцем напряжснии, и.ии же они народятея разлитными способами на обмотку статора Оффективные методы борл бын со всеми этими помехами достаточно хорошо разработалы, но

их применение обыцно приводит к существенному удорожанию систем измерения

В зависимочти ол тина элекюрической мощности, ее табаринов и мощности, применяюя разли'іные ехемы уетановки далоиков: иредназнаяенных для иямерения
 частичшыл paspяgов в ижоляџии обмотки eratopa. Салая проетая схема установки тетырех датчиков привсдена на рисункс 1. Ocmonilylo poли зиесь иирают специальные эПоксидно - слюдяные
 оботначенные на cseme
 устанав.тиваютея внутри корпуса статора
 и подклюнаются к к.Темелам обмотки. Јти конденсаторы связи имеют емкости 80 пико巾арад. и предназнагены дая виделения

При всей своей простоле данная ехема в наибольшей степени подвержена влиянию помех. приходящих в етатор по кабельной линии извне. Доя отетройки измеритетьной схемы

 кабе.я. Вклюдение в ижмеритедьную схему этого датчика позволяет реализовать эфсективную систему |иилтрации импульсов, назнваемую в литературе «time of arrival» анали: времени прихода импульса к разнымм датчикаия.
 статора. напримгр в фазе "А», то он снағала должен быть зарегистрирован конденсатором

 замкнутьея терез его распределенную емкость. и только потомя по внешнсй бронс прийти к

 системы «time of arrival». Іри приходе импульса помези из кабеля время причода импульсов к датџикам меняетея на противоположное, снатала прияодит импульс с датчика «RFCT». а затем с конденсатора связи.
 салоров мощных пурбо и гидрогенераторов. В крупных элекрических машинах нмпулье: возникший внугри обмолки больших tеометри'еских размеров. далеко от внешних зажимов,

 зона дедекта изоляции. тем в ботьпий степени затуают импульсы ЧР.

По этой причине дэя корректного опредетения уровня тастичныя разрядов в
 связи недосаточно. Необходимо применять дополнительные далчики, смонтированные внутри обмояки. Эю мону быть дантики поля, вклеенные под пазовый клин сгатора, или же в качеств дополинтельних датчиков можно иеполь; зоваты, датчики температурыт,

 предварительной заявке, установлены в пазах статора на заводе - изготовителе. Если генератор уже находитея в эксптуатаџии. то улобнее, в каיгетве антенн для регистрации

 На рисунке 2 показана такая измеритетьная схема. которая регистрирует импутьсы
 номощи ветроешших датиков лемиературы тииа Pilloo. Д:я простоты на рисунке показана только одга фаза обмотки шатора «A-خ", соетоямая и: 6 секций. Датьик таститных разрядов марки «DRTD-3" вклюонается в рағрыв проводов, идущих от Pllot к приборам измерения лемперагуры.
В репе "MDR» предусмотрено испольование до трех датчиков марки "RFCT-3». по

 поэтому для повышения достоверности измерений тастичных разрядов можно выбрать их специальным образом, ятобы использовать термосопротивления, равномерно распределенныс по окружности статора. B этом слутас лостигастся максиматьная чувслвительноит измерительной схемы.

Lатчик «DRTD-3» необходимо монтировать непосредственно в ктеммной коробке на генераторе. В этом случае затукание высоконастотных сигнатов ЧР в проводах от датиков.
 чаетичных разрядов ие вноснт искадений в иямерение темпераизры обмоткн, так как внутренее соиротивлние датчика "DRTD-3» нрактически равно пуно.

Кажыый зарегистрированный импульс тастичного разряда наиболее полно характеризуетея четлрьмя параметрами.
 сигна.аа от датгика ($\mathrm{m} V$) , и.ои энергни.

- Фазовый угол возникновения импульса определяемый относительно синусоиды питаюџей сети.

- ІІолная ддитеіьность импульса ЧР? вкнючаюшая в себя все колебания, определяемая на уровне 5° о от максимальной ампиитуды.

IIa осповаиин анализа такой ниформалии в реле «MDR" расечитываетея обииий
 Стациоиариое иэмереине ЧР па рабонаощем оборудовании даст воэможноетв выявлянь устойтивые тенденции в изменении этих параметров, оценивать, скорость, таких проиессов. Встроснные атгоритмы диагностики позволяют автоматипески опредетять тип имеюицихея деффктов, их количество. иштенсивност, развития. Все это в совокупшости позволяет

надежно контролировать техническое состояние изоляции обмотки статора, и, при необходимости, планировать сервисные и ремонтные работы.

Контроль изоляции обмотки ротора.

Основными дефектами изоляции обмотки возбуждения ротора синхронной электрической машины являются: наличие короткозамкнутых витков в обмотке, и снижение качества изоляции обмотки относительно стали ротора.

При появлении в обмотке возбуждения короткозамкнутых витков нарушается расчетное синусоидальное распределения магнитного поля в зазоре, значительно возрастает вибрация подшипников и пакета статора генератора с частотой, равной оборотной частоте. Попытки провести динамическую балансировку ротора генератора при помощи грузов не приводит к снижению вибрации во всех режимах работы. Это объясняется тем, что при различных нагрузках генератора величина электромагнитного дисбаланса, следовательно, и вес балансировочных грузов, имеют различное значение.

Определить наличие короткозамкнутых витков в обмотке ротора работающего генератора можно несколькими способами.

Bо-первых, можно проанализировать спектральный состав напряжения на зажимах генератора в режиме холостого хода. Появление в напряжении нечетных гармоник частоты питающей сети, в основном третьей и пятой, если этого не было в предыдущих измерениях, может говоритъ о наличии в обмотке возбуждения короткозамкнутых витков. Нечетные гармоники должны проявиться во всех трех фазах обмотки одинаково.

Характерным признаком наличия короткозамкнутых витков в обмотке возбуждения можно считать прямую связь между уровнем вибрации подшипников и пакета статора и нагрузкой генератора. Интересным при этом является то, что с ростом нагрузки вибрация может как возрастать, так и уменьшаться, все будет зависеть от того, для какого режима работы генератора были установлены балансировочные грузы. Для того, чтобы при этом исключить влияние тепловых дисбалансов, контролировать изменение вибрации необходимо сразу же после изменения нагрузки, когда еще не произойдет изменение распределения температур внутри генератора.

Рис. 3. Изменение магнитного поля в зазоре электрической машины.

Эффективным
способом контроля наличия короткозамкнутых витков в обмотке возбуждения можно считать контроль электромагнитного поля в зазоре. Для этого используются простые индуктивные датчики, представляющие собой катушку небольшого размера, регистрирующую изменение магнитного потока в зазоре.

Как видно из рисунка, магнитного поля, в основном, связаны с изменение полюсов обмотки возбуждения. На эти изменения накладывается модуляция магнитного потока зубцовой структурой ротора. Появление искажения периодичности этих зубцов может говорить о наличии короткозамкнутых витков в обмотке возбуждения. Также можно «зеркально» сравнивать картины изменения поля в зазоре при прохождении разных полюсов ротора.

Все эти три метода оценки состояния изоляции обмотки возбуждения реализованы в
 нарамегров, причем в различных режимах работы синхронной машины, то методы не доведены до уровня авюоматизированного полупения диатности'еских заклютений, а тробуот уєастия жкепертов. Опи предыазначепы эля оперативпого получеиия веей
 уеловий экеліуатации оборуяонаияяя.

K реле "MDR* может быть подключена специатьная приставка "MDW".
При помоџи этой приставки, на основании апализа шапряжения ша обмотке вотбуктения ротора, можно в режиме мониторинга конгролировать величину соиротивления изодяиии обмотки возбуждения олносигельно «бочки" ротора. Іри этом. дополнительно. происходит определение места ужудшения состояния изоляции обмютки. Данное значение определяетея в процентном отношении.
 сопрогивлешия всей обмотки возбулддепия ротора.

Еєли реле "MDR" уцтанавливаетея для конгроля солляния изоляции внсоковольтного асинмронного двигателя, то дтя контроля состояния короткозамкнутой клетки ротора исполдзуетея метод анализа спектров тока, шапряжения и мошности: потребияемым обметтой статора.

Контроль электромагнитной несимметрии э.ектритеской машины.

Важным аспектом оценки технитеского состояния генератора является выявление налиיии электромагнитной несимметрии. Такие несимметрии могут быть заложены в rелерагор па заводе изговителе, или же, ую более важно, возиикнути в нроцессе эксппуаации оборудования. Наиболе чаской причиной появ.ления "ириобретенной" несимметрии является возникновение короткозамкнутых контуров в пакете статора. обытно

 является измерение углов сдвига фазных напряжений. В режиме холостого лода производитея синхронная регистрадия векторов фазных ЭЛС. Датее, с высокой точностьк. по слиниџ угловых минут, производитея расчет углов сдвита между векторами. Появление изменений в величинах взаммных утлов может tоворить о появ.гнии в статоре или роторе эпектромагнитной несимметрии.

Для повышения достоверности диагностики этого параметра можно нспользовать
 неимммерией векторов фазиых папрякпий. Но этой причине вее эти чепыре вектора в рел

Г.ели электритеская машина работает в. режиме дригателя, то при помоши реле «MDR" наличиะ злектомашнитпой шесимметрии коптолируетея на осповаиии ашализа епектров потребляемых тока и мошшости. Появление в тых спектрах гармоиик, кратыьх частоте воздействия электромагнитных сил. т. е. кратных частоте 100 герц. будет говорить о налигии возможных де(екктов на пути протекания основного магнитного потока в электродвигателе.

Дололиительные ме゙тоды конироля состояиия злекррической машины.
Важным парамелром, позволяющим протнозировать развитие солояния изо:яционной сишемы генеранора, яеляеля анализ вибрации стали в зоне лобовых часьей обмотки статора. При ослаблеиин крепления тобовым частей секций обмотки, а также при

 частот $1 \div 4$ килогерца. Точное положение этой полосы, и значения частот. зависят от конструктивных особенностей каждото конкретного генератора. ІІаличие явно выраженного тренда. показнваюпего увеличение мопиости высокочастотных вибраиий, говорит об

ухудшении качества креплений элементов обмотки в статоре. В этом случае внутренние диагностические алгоритмы реле «MDR» будут информировать эксплуатационный персонал о повышенном механическом износе изоляции обмотки статора.

Интересную информацию о состоянии генератора дают два емкостных датчика контроля величины воздушного зазора, которые входят в состав поставки реле «MDR». Датчики монтируются в зазоре генератора со сдвигом на 90 градусов, поэтому информация от них дает возможность построить прецессию ротора относительно статора. Такая информация бывает полезной для выявления некоторых механических проблем, связанных с состоянием ротором генератора, например, диагностировать трещины. Датчики контроля воздушного зазора более эффективны, чем используемые в настоящее время датчики «боя вала». Это объясняется тем, что они монтируются непосредственно в зазоре, тогда как датчики «боя вала» устанавливаются на валу ротора.

Рис. 4. Внешний вид реле «MDR».

ВЫВоДЫ:

1. Разработано и начато производство компактного (250 * 170 * 40 мм) микропроцессорного реле «MDR», рисунок 4. Реле позволяет в режиме мониторинга контролировать состояние изоляции турбо и гидрогенераторов, а также высоковольтных двигателей.
2. Защитное реле марки «MDR» позволяет контролировать состояние изоляции обмотки статора, в режиме мониторинга, на основании измерений и анализа частичных разрядов.
3. Состояние изоляции обмотки возбуждения ротора контролируется при помощи трех, взаимно дополняющих методов. Это: анализ магнитного поля в зазоре, контроль спектрального состава ЭДС обмотки статора, контроль вибрации пакета статора. Кроме того, реле позволяет непрерывно измерять сопротивления изоляции относительно ротора.
